
姓 名:王敏 性 别:男
职 务:
职 称:研究员 学 历:博士
电 话:(+86)731-84615236 通讯地址:湖南省长沙市芙蓉区马坡岭远大二路644号
传 真:(+86)731-84612685 邮政编码:410125
电子邮件:mwang@isa.ac.cn, wing_mail@hotmail.com
博士毕业于中国科学院大学,研究员,博士生导师,国家基金青年科学基金项目A类(原国家杰青,2025)、B类(原国家优青,2019)获得者,国家重点研发常规项目首席科学家(2023),中国科学院青年创新促进会会员(2017)和优秀会员(2021),畜牧兽医学会第三届井冈新秀奖(2019),颐和青年成就奖(2021),湖南省领军拔尖人才(2022),湖南省企业科技创新创业团队首席科学家(2022)。担任湖南省农业生态工程重点实验室主任,湖南省反刍动物温室气体减排国际科技创新研究中心主任、中国科学院青年创新促进会生命科学分会会长和院理事会理事,中国畜牧兽医学会动物营养学分会理事并兼任副秘书长、全国畜牧业标准委员会委员。长期从事瘤胃氢迁移和甲烷排放研究, 包括氢代谢的微生物学基础、营养学功能和甲烷减排技术开展研究。主要学术成果:1)研制全自动体外模拟瘤胃发酵系统、呼吸代谢舱、溶解态氢测定和AHC甲烷测定等技术方法、构建了LE系列模型,自主创建了反刍家畜胃肠道氢代谢和甲烷生成与排放研究平台;2)揭示了反刍家畜瘤胃氢代谢的微生物学基础;3)发现氢具有调控瘤胃发酵模式和甲烷生成的重要营养学功能;4):研发了反刍家畜氢代谢调控与甲烷减排技术,实现了胃肠道甲烷减排10-20%。
相关研究成果以第一/通讯作者(含共同)在PNAS、ISME J、 Microbiome、Journal of Nutrition、British Journal of Nutrition、Journal of Dairy Science、Journal of Animal Science、Animal Feed Science and Technology、Animal等本专业国际主流杂志上发表SCI论文80多篇,授权明专利6项。担任Innovation等期刊编委。研究成果被IMSE Journal编委会选为特刊论文、被Science专题评述推介、J Sci Food Agri和Innovation-Life选为封面论文,被国际微生态学会、美国动物科学学会、美国乳业科学学会长文亮点报道,Anim Feed Sci Technol 杂志 Top 25 (排名第7)最热门论文。
诚邀从事厌氧微生物、大数据、合成生物学和经济政策的优秀毕业生加入本实验室开展合作研究!电子邮件:mwang@isa.ac.cn; QQ: 38516901
1. 国家基金青年科学基金项目A类,反刍动物氢代谢规律与甲烷减排,2026/01-2030/12,主持
2. 国家乳业技术创新中心,全泌乳周期奶牛瘤胃甲烷排放的核算技术研发与应用,2025/07-2028/6,主持
3. 国家重点研发计划项目,牛羊营养代谢平衡与甲烷减排技术,2024/01-2028/12,项目主持,主持
4. 中国科学院科研装备类自主研制项目,养殖场牛羊AHC瘤胃甲烷排放在线监测设备与跨区域组网平台研发,2025/01-2026/12,主持
5. 国家基金联合基金重点项目,湘西黄牛瘤胃秸秆纤维高效降解关键微生物的适应性规律与效应机制,2023/01-2026/12,主持
6. 中国科学院战略性先导科技专项子课题,草产品饲用价值评定及其效应因子提升草食家畜营养代谢的机理解析,2021/01-2025/12,主持
7. 湖南省重点研发项目,草产品效应因子提升泌乳奶牛营养代谢的机理解析与应用示范,2023/01-2024/12,主持
8. 国家基金青年科学基金项目B类,反刍家畜瘤胃氢代谢与甲烷减排,2020/01-2022/12,主持
9. 国家基金国际合作重点项目,瘤胃内纤维降解与甲烷生成过程氢迁移规律及甲烷减排调控机理,2016/01-2020/12,主持
SCI发表目录(第一和通讯作者)
1. Li, Q., R. Wang, X. Zhou, S. Li, S. Zhang, X. Zhang, W. Wang, J. Jiao, P. H. Janssen, E. M. Ungerfeld, V. Müller, R. Conrad, C. Greening, Z. Tan, B. Fu, and M. Wang (*). 2025. Metabolic versatility enables acetogens to colonize ruminants with diet-driven niche partitioning. The ISME Journal 19(1):wraf183.
2. Zhou, X., Q. Li, S. Zhang, W. Wang, R. Wang, X. Zhang, Z. Tan, and M. Wang (*). 2025. GCompip: a pipeline for estimating the gene abundance in microbial communities. Bioinformatics Advances 5(1): vbaf207.
3. Ni, G., M. Wang (*), N. Walker, S. Muetzel, O. Schmidt, A. Fischer, R. T. Stemmler, P. M. Leung, X. Zhang, Q. Li, S. Jain, M. Jespersen, R. Grinter, S. D. J. Archer, D. Pacheco, K. Lowe, P. B. Pope, V. Müller, D. W. Pitta, P. H. Janssen, M. Watson, G. T. Attwood, E. Ver Loren van Themaat, M. Kindermann, and C. Greening. 2025. Methanogenesis inhibition remodels microbial fermentation and stimulates acetogenesis in ruminants. Proc. Natl. Acad. Sci. U.S.A. 122(41):e2514823122.
4. Li Q., Huo J., Ni G., Zhang F., Zhang S., Zhang X., Wang R., Jiao J., Yu Z., Pu X., Yue Y., Ungerfeld E., Zhang X., Wu J., Tan Z., Greening C., Wang M.*, Reductive acetogenesis is a dominant process in the ruminant hindgut. Microbiome, 2025. 13:28
5. Xie X., Cao Y., Li Q., Li Q., Yang X., Wang R, Zhang X., Tan Z., Lin B, Wang M.*, Mitigating Enteric Methane Emissions: An Overview of Methanogenesis, Inhibitors and Future Prospects. Animal Nutrition, 2025. 21:84-96.
6. Wang, M., D. Wan, X. Xie, Z. Bai, R. Wang, X. Zhang, Y.-Z. Gao, Z. Tan, and Y. Yin. 2024. Crop-livestock integration: Implications for food security, resource efficiency and greenhouse gas mitigation. The Innovation Life 2(4):100103.
7. Jiao, J., Wu, J., Zhou, C., He, Z., Tan, Z., Wang, M. (*) Ecological niches and assembly dynamics of diverse microbial consortia in the gastrointestine of goat kids. Isme Journal, 2024. 18(1), wrae002.
8. Li, Q., Ma, Z., Huo, J., Zhang, X., Wang, R., Zhang, S., Jiao, J., Dong, X., Janssen, P.H., Ungerfeld, E.M., Greening, C., Tan, Z., Wang, M. (*) Distinct microbial hydrogen and reductant disposal pathways explain interbreed variations in ruminant methane yield. Isme Journal, 2024. 18(1), wrad016.
9. Pu, X., Zhang, X., Yi, S., Wang, R., Li, Q., Zhang, W., Qu, J., Huo, J., Lin, B., Tan, B., Tan, Z., Wang, M(*). 2024. Mixed ensiling plus nitrate destroy fiber structure of rape straw, increase degradation, and reduce methanogenesis through in vitro ruminal fermentation. Journal of the Science of Food and Agriculture. 2024, 104: 3428-3436.
10. Wang R., Cao Y.R., Zhang X.M., Zhang F., Tian X., Zhong R.Z., Tan Z.L. & Wang M. (*) Relationship between daily variations of methane emissions and eructation peaks in dairy cows measured with an automated head-chamber system. 2023 Animal Feed Science and Technology 303, 115714.
11. Zhang X.M., Chen W.X., Yan Q.X., Wang C., Lin B., Yi S.Y., Wang R., Ma Z.Y., Li Q.S., Jonker A., Sun X.Z., Wittayakun S., Tan Z.L. & Wang M. (*)Low-protein diet promotes nitrogen retention efficiency via enhanced renal urea reabsorption and microbial hydrogen incorporation in the rumen of goats. Animal Feed Science and Technology 2023 305, 115762.
12. Li Q.S., Wang R., Ma Z.Y., Zhang X.M., Jiao J.Z., Zhang Z.G., Ungerfeld E.M., Yi K.L., Zhang B.Z., Long L., Long Y., Tao Y., Huang T., Greening C., Tan Z.L. Wang M. (*) Dietary selection of metabolically distinct microorganisms drives hydrogen metabolism in ruminants. The ISME Journal,2022. 16, 2535–46
13. Wang R, Bai Z, Chang J, Li Q, Hristov AN, Smith P, Yin Y, Tan Z, Wang M. (*). China’s low-emission pathways toward climate-neutral livestock production for animal-derived foods. The Innovation 2022;3(2):100220.
14. Adebayo Arowolo M, Zhang XM, Wang M. (*), Wang R, Wen JN, Hao LZ, He JH, Shen WJ, Ma ZY, Tan ZL. Proper motility enhances rumen fermentation and microbial protein synthesis with decreased saturation of dissolved gases in rumen simulation technique. Journal of Dairy Science 2022;105(1):231-41.
15. Xie, F., Jin, W., Si, H., Yuan, Y., Tao, Y., Liu, J., Wang, X., Yang, C., Li, Q., Yan, X., Lin, L., Jiang, Q., Zhang, L., Guo, C., Greening, C., Heller, R., Guan, L.L., Pope, P.B., Tan, Z., Zhu, W., Wang, M. (*), Qiu, Q., Li, Z., Mao, S. An integrated gene catalog and over 10,000 metagenome-assembled genomes from the gastrointestinal microbiome of ruminants. Microbiome, 2021. 9(1), 137.
16. Wang, R., Wang M(*)., Lin, B., Ungerfeld, E.M., Ma, Z.Y., Wu, T.T., Wen, J.N., Zhang, X.M., Deng, J.P., Tan, Z.L. 2021. Associations of ruminal hydrogen and pH with fiber digestibility and microbiota composition induced by increasing starch intake in beef cattle. Animal Feed Science and Technology, 278, 114980.
17. Wang R, Wang M(*), Lin B, Ma ZY, Ungerfeld EM, Wu TT, Wen JN, Zhang XM, Deng JP, Tan ZL. Association of fibre degradation with ruminal dissolved hydrogen in growing beef bulls fed with two types of forages. British Journal of Nutrition 2021, 125, 601-610.
18. Wang R, Gao C, Wang M(*), Zhang XM, Ma ZY, Wu DQ, Wei ZS, Li ZC, Gao S, Tan ZL. Evaluation of response time in monitoring system on the accuracy of recording individual feeding behavior and feed intake in dairy cows. Animal Feed Science and Technology 2021;279:115026.
19. Wang F, Harindintwali JD, Yuan Z, Wang M(*), Wang F, Li S, Yin Z, Huang L, Fu Y, Li L, et al. Technologies and perspectives for achieving carbon neutrality. The Innovation 2021;2(4):100180.
20. Zhang X.M., Gruninger R.J., Alemu A.W., Wang M. (*), Tan Z.L., Kindermann M., Beauchemin K.A. 3-Nitrooxypropanol supplementation had little impact on fiber degradation and microbial colonization of forage particles evaluated using the in situ ruminal incubation technique. Journal of Dairy Science. 2020.103:8986–8997.
21. Ma, Z.Y., Zhang, X.M., Wang, R., Wang, M. (*), Liu, T., Tan, Z.L. 2020. Effects of Chemical and Mechanical Lysis on Microbial DNA Yield, Integrity, and Downstream Amplicon Sequencing of Rumen Bacteria and Protozoa. Frontiers in Microbiology, 11:2812.
22. Zhang, X.M., Wang M(*), Yu, Q., Ma, Z.Y., Beauchemin, K.A., Wang, R., Wen, J.N., Lukuyu, B.A., Tan, Z.L. Liquid hot water treatment of rice straw enhances anaerobic degradation and inhibits methane production during in vitro ruminal fermentation. Journal of Dairy Science. 2020.103:4252-4261.
23. Arowolo, M. A., Yang S., Wang M(*),He J. H., Wang C., Wang R., Wen J. N., Ma Z. Y., and Tan Z. L.. The effect of forage theoretical cut lengths on chewing activity, rumen fermentation, dissolved gases, and methane emissions in goats. Animal Feed Science and Technology 2020. 263:114454.
24. Teklebrhan T, Wang R, Wang M(*), Wen JN, Li Wei T, Zhang XM, Ma ZY, Tan ZL. Effect of dietary corn gluten inclusion on rumen fermentation, microbiota and methane emissions in goats. Animal Feed Science and Technology 2020:114314.
25. Beauchemin, K.A., Ungerfeld, E.M., Eckard, R.J., Wang, M. 2020. Review: Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation. Animal, 14(S1), s2-s16.
26. Kang J, Wang R, Tang S, Wang M(*), Tan Z, Bernard LA. 2020. Chemical composition and in vitro ruminal fermentation of pigeonpea and mulberry leaves. Agroforestry Systems. 94:1521–1528.
27. Liu, S., Zhang, Z., Hailemariam, S., Zheng, N., Wang, M(*), Zhao, S., Wang, J. 2020. Biochanin A Inhibits Ruminal Nitrogen-Metabolizing Bacteria and Alleviates the Decomposition of Amino Acids and Urea In Vitro. Animals, 10(3), 368.
28. Zhang XM, Medrano RF, Wang M(*), Beauchemin KA, Ma ZY, Wang R, Wen JN, Lukuyu BA, Tan ZL, He JH. Corn oil supplementation enhances hydrogen use for biohydrogenation, inhibits methanogenesis, and alters fermentation pathways and the microbial community in the rumen of goats. Journal of Animal Science 2019. 97:4999–5008
29. Wang R, Wang M (*), Zhang XM, Yang HM, Wen JN, Ma ZY, Feng BL, Deng JP, Tan ZL. Technical note: Evaluation of interval between measurements and calculation method for the quantification of enteric methane emissions measured by respiration chamber. Journal of Dairy Science 2019;102(7):6242-6247.
30. Ma ZY, Zhang XM, Wang M (*), Wang R, Jiang ZY, Tan ZL, Gao FX, Muhammed A. Molecular hydrogen produced by elemental magnesium inhibits rumen fermentation and enhances methanogenesis in dairy cows. Journal of Dairy Science 2019;102(6):5566-5576.
31. Wang R, Si HB, Wang M(*), Lin B(*), Deng JP, Tan LW, Liu WX, Sun XZ, Teklebrhan T, Tan ZL. Effects of elemental magnesium and magnesium oxide on hydrogen, methane and volatile fatty acids production in in vitro rumen batch cultures. Animal Feed Science and Technology 2019;252:74-82.
32. Zhang, X, Medrano, RF, Wang, M (*), Beauchemin, KA, Ma, Z, Wang, R, Wen, J, Bernard, LA, Tan Z. 2019, Effects of urea plus nitrate pretreated rice straw and corn oil supplementation on fiber digestibility, nitrogen balance, rumen fermentation, microbiota and methane emissions in goats. Journal of Animal Science and Biotechnology: 10:6.
33. Wang R, Wang M (*), Zhang XM, Wen JN, Ma ZY, Long DL, Deng JP(*), Tan ZL. Effects of rumen cannulation on dissolved gases and methanogen community in dairy cows. Journal of Dairy Science. 2019. 102(3):2275-82.
34. Wang M, Wang R, Liu M, Beauchemin KA, Sun XZ, Tang SX, Jiao JZ, Tan ZL, He ZX. Dietary starch and rhubarb supplement increase ruminal dissolved hydrogen without altering rumen fermentation and methane emissions in goats. Animal. 2019. 13(5):975-982.
35. He, ZX, Qiao JY, Yan QX, Tan ZL,Wang M (*).Quantitative evaluation of ruminal methane and carbon dioxide formation from formate through C-13 stable isotope analysis in a batch culture system. Animal. 2019. 13:90-97.
36. He ZX, Qiao JY, Tan ZL, Wang M (*). 2018. Carbon-13 stable isotope analysis reveals the existence but insignificance of ruminal methanogenic pathway from acetate in a batch culture system. Animal Feed Science and Technology 246:46-51.
37. Wang R, Wang M (*), Ungerfeld EM, Zhang XM, Long DL, Mao HX, Deng JP, Bannink A, Tan ZL. 2018. Nitrate improves ammonia incorporation into rumen microbial protein in lactating dairy cows fed a low-protein diet. Journal of Dairy Science101: 9789-9799.
38. Zhang X; Wang M(*);Wang R; Ma Z; Long D; Mao H; Wen J; Bernard LA; Beauchemin KA; Tan Z; 2018 Urea plus nitrate pretreatment of rice and wheat straws enhances degradation and reduces methane production in in vitro ruminal culture. Journal of the Science of Food and Agriculture 98: 5205-5211.(封面论文)
39. Ma, ZY; Wang, R; Wang, M(*); Zhang, XM; Mao, HX; Tan, ZL. Short communication: Variability in fermentation end-products and methanogen communities in different rumen sites of dairy cows. Journal of Dairy Science, 2018 101(6):5153-5158.
40. Wang, M; Wang, R; Zhang, XM; Ungerfeld, EM; Long, DL; Mao, HX; Jiao, JZ; Beauchemin, KA; Tan, ZL(*). Molecular hydrogen generated by elemental magnesium supplementation alters rumen fermentation and microbiota in goats. British Journal of Nutrition, 2017.9, 118(6): 401~410
41. Wang, Z; Elekwachi, CO; Jiao, JZ; Wang, M(*); Tang, SX; Zhou, CS; Tan, ZL; Forster, RJ. Investigation and manipulation of metabolically active methanogen community composition during rumen development in black goats. Scientific Reports, 2017.3.24, 7
42. Wang, M; Wang, R; Janssen, PH; Zhang, XM; Sun, XZ; Pacheco, D; Tan, ZL(*)Sampling procedure for the measurement of dissolved hydrogen and volatile fatty acids inthe rumen of dairy cows. Journal of Animal Science, 2016, 94: 1159~1169.
43. Wang, M; Wang, R; Xie, TY; Janssen, PH; Sun, XZ; Beauchemin, KA; Tan, ZL(*); Gao, M. Shifts in rumen fermentation and microbiotaare associated with dissolved ruminal hydrogen concentrations in lactatingdairy cows fed different types of carbohydrates. Journal of Nutrition, 2016.9.1, 146: 1714~1721
44. Wang, M; Ungerfeld, EM; Wang, R; Zhou, CS; Basang, ZZ; Ao, SM; Tan, ZL(*). Supersaturation ofdissolved hydrogen and methane in rumen of Tibetan Sheep. Frontiers in Microbiology, 2016, 7(850)
45. Wang, M; Wang, R; Tang, SX; Tan, ZL(*); Zhou, CS; Han, XF. Comparisons of manual and automated incubation systems: Effects of venting procedures on in vitro ruminalfermentation. Livestock Science, 2016, 184: 41~45
46. Wang, M; Wang, R; Yang, S; Deng, JP; Tang, SX; Tan, ZL(*).Effects of three methane mitigation agents onparameters of kinetics of total and hydrogen gas production, ruminalfermentation and hydrogen balance using in vitro technique. Animal Science Journal, 2016, 87: 224~232.
47. Wang, M; Wang, R; Sun, XZ; Chen, L; Tang, SX; Zhou, CS; Han, XF; Kang, JH; Tan, ZL(*); He, ZX. A mathematical model to describe the diurnalpattern of enteric methane emissions from non-lactating dairy cows post-feeding. Animal Nutrition, 2015.12.1, 1(4): 329~338
48. Wang M; Sun XZ; Janssen PH; Tang SX; Tan ZL(*) Responses of methane production and fermentation pathways to the increased dissolved hydrogen concentration generated by eight substrates in in vitro ruminal cultures Animal Feed Science and Technology, 2014, 194: 1~11.
49. Wang M,Janssen PH,Sun XZ,Muetzel S,Tavendale M,Tan ZL(*),Pacheco D,A mathematical model to describe in vitro kinetics of H2 gas accumulation,Animal Feed Science and Technology,2013,184(1-4):1-16。
50. Wang M,D. PACHECO,X. Z. SUN,Tang sx,Tan zl(*),Deriving fractional rate of degradation of logistic-exponential (LE) model to evaluate early in vitro fermentation,Animal,2013,7:6:920-929。
51. Wang, M,Zhao, XG,Liao, HY,Tan, ZL(*),Tang, SX,Sun, ZH,Zhou, CS,Han, XF,Effects of rice straw particle size on digesta particle size distribution, nitrogen metabolism, blood biochemical parameters, microbial amino acid composition and intestinal amino acid digestibility in goats,Animal Science Journal,2011,82(1):78-85。
52. Wang M,Tan ZL(*),Tang SX,Modeling in vitro gas production kinetics: Derivation of Logistic–Exponential (LE) equations and comparison of models,Animal Feed Science and Technology,2011,165(3-4):137-150。
53. Wang, M,Zhao, X. G.,Tan, Z. L.(*),Tang, S. X.,Zhou, C. S.,Sun, Z. H.,Han, X. F.,Wang, C. W.,Effects of Increasing Level of Dietary Rice Straw on Chewing Activity, Ruminal Fermentation and Fibrolytic Enzyme Activity in Growing Goats,Asian-Australasian Journal of Animal Sciences,2010,23(8):1022-1027。
54. Wang, M,Jiang, J.,Tan, Z. L.(*),Tang, S. X.,Sun, Z. H.,Han, X. F.,In situ Ruminal Crude Protein and Starch Degradation of Three Classes of Feedstuffs in Goats,Journal of Applied Animal Research,2009,36(1):23-28。
55. Zhao, X. G.(#),Wang, M.(#),Tan, Z. L.(*),Tang, S. X.,Sun, Z. H.,Zhou, C. S.,Han, X. F.,Effects of Rice Straw Particle Size on Chewing Activity, Feed Intake, Rumen Fermentation and Digestion in Goats,Asian-Australasian Journal of Animal Sciences,2009,22(9):1256-1266。
56. Wang, M,Hu, Y,Tan, ZL(*),Tang, SX,Sun, ZH,Han, XF,In situ ruminal phosphorus degradation of selected three classes of feedstuffs in goats,Livestock Science,2008,117(2-3):233-237。