姓 名:赵杰 性 别:男
职 务:
职 称:研究员 学 历:博士
电 话:(86)-0731-84619720 通迅地址:湖南省长沙市芙蓉区马坡岭远大二路644号
传 真:(86)-731-84612685 邮政编码:410125
电子邮件:jzhao@isa.ac.cn
研究方向是土壤生态学和恢复生态学,研究兴趣是植被与土壤生物相互作用,主要以土壤微生物和土壤线虫群落为工具开展相关研究,关注土壤微生物群落和线虫群落组成状况及功能。目前,研究主要在我国西南喀斯特退化生态系统,基于喀斯特生态系统的退化和恢复开展。目前已发表第一作者和通讯作者SCI论文40余篇,其中10篇在土壤学重要期刊Soil Biology & Biochemistry发表。先后获得中国生态学学会青年科技奖、中国科学院青促会优秀会员、湖南省杰青、湖南省科技创新领军人才、广西区青年八桂学者、中国科学院西部学者和中国科学院广州分院优秀青年科技工作者等荣誉称号。
其他个人主页
ResearchGate: https://www.researchgate.net/profile/Jie_Zhao6
GoogleScholar: https://scholar.google.com.hk/citations?user=z0BfE8wAAAAJ&hl=en
工作经历
2020.01--至今 中国科学院亚热带农业生态研究所 研究员
2017.06—2018.03 University of Western Australia 访问学者
2015.1--2019.12 中国科学院亚热带农业生态研究所 副研究员
2012.7--2014.12 中国科学院亚热带农业生态研究所 助理研究员
教育经历
2011.1-2012.1 University of Vermont 联合培养
2007.9-2012.7 中国科学院华南植物园 生态学/博士
2003.9-2007.7 山东大学(威海) 生物技术专业/理学学士
[1]国家重点研发计划青年科学家项目:南方喀斯特农田土壤生态服务协同提升的生物调控机制与途径(2022YFD1901000),2022.11-2025.12,主持;
[2]国家自然科学基金联合基金重点支持项目:喀斯特关键带水分和氮磷循环的土壤微食物网调控机制(U21A20189),2022.01-202025.12,主持;
[3]湖南省自然科学基金杰出青年基金:南方喀斯特草地土壤氮转化关键微生物与线虫互作对氮循环过程的影响机制(2021JJ10042),2021.01-2023.12,主持;
[4]中国科学院青年创新促进会优秀会员项目:土壤微食物网结构与功能(Y201969),2020.01-2022.12,主持;
[5]湖南省科技创新领军人才项目:南方喀斯特农田生态系统多功能性提升途径(2023RC1076),2022.01-2025.12,主持;
[6]广西八桂青年拔尖人才培养项目:喀斯特关键带土壤食物网组成结构与生态功能,2024.01-2026.12,主持;
[7]国家自然科学基金面上项目:喀斯特人工草地土壤线虫对硝化微生物及硝化作用的影响(42377284),2024.01-2027.12,主持;
[8]国家自然科学基金面上项目:喀斯特人工牧草生态系统管理对土壤微食物网的影响(41877055),2018.01-2021.12,主持;
[9]研究所青年创新团队项目:喀斯特土壤生态服务提升的生物调控机制(2017QNCXTD_ZJ),2017.07-2020.06,主持;
[10]中国科学院西部之光西部学者:喀斯特水土要素耦合关系与土壤关键生态服务提升研究,2019.01-2021.12,主持;
[11]广西自然科学基金面上项目:豆科灌木对喀斯特人工牧草生态系统土壤食物网的作用机制(2018JJA130004),2019.01-2020.12,主持;
[12]国家自然科学青年基金项目:喀斯特植被恢复初期土壤线虫对添加和剔除豆科植物的响应(31300448),2014.1-2016.12,主持;
[1]Wang,J.,Zhao,J.*,Yang,R.,Liu,X.,Zhang,X.,Zhang,W.,Chen,X.,Yan,W.,Wang,K.,2024. Interplanting leguminous shrubs boosts the trophic interactions of soil micro-food web in a karst grassland. Soil Biology and Biochemistry 188: 109224.
[2]Liao,X.,Fu,S.,Zhao,J.*,2023. Altered energy dynamics of multitrophic groups modify the patterns of soil CO2 emissions in planted forest. Soil Biology and Biochemistry 178: 108953.
[3]Zheng,H.,Gao,D.,Zhou,Y.,Zhao,J.,2023. Energy flow across soil food webs of different ecosystems: Food webs with complex structures support higher energy flux. Geoderma 439: 116666.
[4]Li,J.,Zhao,J.*,Liao,X.,Hu,P.,Wang,W.,Ling,Q.,Xie,L.,Xiao,J.,Zhang,W.,Wang,K.,2024. Pathways of soil organic carbon accumulation are related to microbial life history strategies in fertilized agroecosystems. Science of the Total Environment 927: 172191.
[5]Zhao,J.,Zhang,W.,Liu,X.,Yang,R.,Xiao,D.,He,X.,Wang,K.,2023. Grass harvesting eliminates the beneficial effects of legume addition on soil nematode communities in a tall grass pasture. Agriculture,Ecosystems & Environment 349: 108468.
[6]Li,J.,Zhao,J.*,Liao,X.,Yi,Q.,Zhang,W.,Lin,H.,Liu,K.,Peng,P.,Wang,K.,2023. Long-term returning agricultural residues increases soil microbe-nematode network complexity and ecosystem multifunctionality. Geoderma 430,116340.
[7]Zhou,Y.,Zheng,H.,Gao,D.,Zhao,J.*,2023. Population dynamics and feeding preferences of three bacterial-feeding nematodes on different bacteria species. Agronomy 13: 1808.
[8]Li,Z.,Chen,X.,Li,J.,Liao,X.,Li,D.,He,X.,Zhang,W.,Zhao,J.*,2022. Relationships between soil nematode communities and soil quality as affected by land-Use type. Forests 13,1658.
[9]Liao,X.,Zhao,J.*,Xu,L.,Tang,L.,Li,J.,Zhang,W.,Xiao,J.,Xiao,D.,Hu,P.,Nie,Y.,Zou,D.,Wang,K.*,2023. Arbuscular mycorrhizal fungi increase the interspecific competition between two forage plant species and stabilize the soil microbial network during a drought event: Evidence from the field. Applied Soil Ecology 185,104805.
[10]Liao,X.,Zhao,J.*,Yi,Q.,Li,J.,Li,Z.,Wu,S.,Zhang,W.,Wang,K.*,2023. Metagenomic insights into the effects of organic and inorganic agricultural managements on soil phosphorus cycling. Agriculture,Ecosystems & Environment 343,108281.
[11]Wang,J.,Wang,H.,Lin,Q.,Wu,Y.,He,X.,Chen,X.,Yan,W.*,Zhao,J.*,2023. Legume biological nitrogen fixation improves but chemical nitrogen fertilizer suppresses soil nematode communities in a Camellia oleifera plantation. Land Degradation & Development 34: 1403-1414.
[12]Zhao,J.,Wang,K.*,2022. Methods for cleaning turbid nematode suspensions collected from different land-use types and soil types. Soil Ecology Letters 4,429-434.
[13]Gao,D.,Moreira-Grez,B.,Wang,K.,Zhang,W.,Xiao,S.,Wang,W.,Chen,H.,Zhao,J.*,2021. Effects of ecosystem disturbance on nematode communities in calcareous and red soils: Comparison of taxonomic methods. Soil Biology and Biochemistry 155,108162.
[14]Zhao,J.,Xiao,J.,Zhang,W.,Fu,Z.,Zhang,M.,Liu,T.,Tan,Q.,Wang,K.,2019. A method for estimating nematode body lengths for use in the calculation of biomass via a simplified formula. Soil Biology and Biochemistry 134,36-41.
[15]Gao,D.,Wan,S.,Fu,S.,Zhao,J.*,2021. Effects of understory or overstory removal on the abundances of soil nematode genera in a eucalyptus plantation. Frontiers in Plant Science 12,640299.
[16]Liao,X.,Song,T.,Xiong,Y.,Zou,D.,Wang,K.,Du,H.,Zhao,J.*,2021. Soil nematode communities on five oceanic islands across a latitudinal gradient in the north of the South China Sea: Influence of biotic and abiotic factors. Ecological Indicators 129,107619.
[17]Gao,D.,Wang,F.,Li,J.,Yu,S.,Li,Z.,Zhao,J.*,2020. Soil nematode communities as indicators of soil health in different land use types in tropical area. Nematology 22,595-610.
[18]Wang,Z.,He,G.,Hou,Z.,Luo,Z.,Chen,S.,Lu,J.,Zhao,J.*,2021. Soil C:N:P stoichiometry of typical coniferous (Cunninghamia lanceolata) and/or evergreen broadleaved (Phoebe bournei) plantations in south China. Forest Ecology and Management 486,118974.
[19]Ye,Y.,Rui,Y.,Zeng,Z.,He,X.,Wang,K.,Zhao,J.*,2020. Responses of soil nematode community to monoculture or mixed culture of a grass and a legume forage species in China. Pedosphere 30,791-800.
[20]Zhao,J.,Xun,R.,He,X.,Zhang,W.,Fu,W.,Wang,K.,2015. Size spectra of soil nematode assemblages under different land use types. Soil Biology and Biochemistry 85,130-136.
[21]Li. J.,Peng,P.,Zhao,J.*,2020. Assessment of soil nematode diversity based on different taxonomic levels and functional groups. Soil Ecology Letters 2: 33-39
[22]Zhao,J.,He,X.,Zhang,W.,Nie,Y.,Fu,Z.,Wang,K.,2015. Unusual soil nematode communities on karst mountain peaks in southwest China. Soil Biology and Biochemistry 88,414-419.
[23]Zhao,J.,Li,D.,Fu,S.,He,X.,Fu,Z.,Zhang,W.,Wang,K.,2016. Using the biomasses of soil nematode taxa as weighting factors for assessing soil food web conditions. Ecological Indicators 60,310-316.
[24]Gao,D.,Wang,X.,Fu,S.,Zhao,J.*,2017. Legume plants enhance the resistance of soil to ecosystem disturbance. Frontiers in Plant Science 8.
[25]Zhang,W.,Zhao,J.#,Pan,F.,Li,D.,Chen,H.,Wang,K.,2015. Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in southwest China. Plant and Soil 391,77-91.
[26]Ciobanu,M.,Popovici,I.,Zhao,J.*,Stoica,I.-A.,2015. Patterns of relative magnitudes of soil energy channels and their relationships with environmental factors in different ecosystems in Romania. Scientific Reports 5,17606.
[27]Zhao,J.,He,X.,Wang,K.,2015. A hypothetical model that explains differing net effects of inorganic fertilization on biomass and/or abundance of soil biota. Theoretical Ecology 8,505-512.
[28]Zhao,J.,Li,S.,He,X.,Liu,L.,Wang,K.,2014. The soil biota composition along a progressive succession of secondary vegetation in a karst area. PLOS ONE 9,e112436.
[29]Zhao,J.,Neher,D.,2013. Soil nematode genera that predict specific types of disturbance. Applied Soil Ecology 64,135-141.
[30]Zhao,J.,Neher,D.,2014. Soil energy pathways of different ecosystems using nematode trophic group analysis: a meta analysis. Nematology 16,379-385.
[31]Zhao,J.,Neher,D.,Fu,S.,Li,Z.,Wang,K.,2013. Non-target effects of herbicides on soil nematode assemblages. Pest Management Science 69,679-684.
[32]Zhao,J.,Shao,Y.,Wang,X.,Neher,D.A.,Xu,G.,Li,Z.a.,Fu,S.,2013. Sentinel soil invertebrate taxa as bioindicators for forest management practices. Ecological Indicators 24,236-239.
[33]Zhao,J.,Wan,S.,Fu,S.,Wang,X.,Wang,M.,Liang,C.,Chen,Y.,Zhu,X.,2013. Effects of understory removal and nitrogen fertilization on soil microbial communities in Eucalyptus plantations. Forest Ecology and Management 310,80-86.
[34]Zhao,J.,Wan,S.,Li,Z.,Shao,Y.,Xu,G.,Liu,Z.,Zhou,L.,Fu,S.,2012. Dicranopteris-dominated understory as major driver of intensive forest ecosystem in humid subtropical and tropical region. Soil Biology and Biochemistry 49,78-87.
[35]Zhao,J.,Wan,S.,Zhang,C.,Liu,Z.,Zhou,L.,Fu,S.,2014. Contributions of understory and/or overstory vegetations to soil microbial PLFA and nematode diversities in eucalyptus monocultures. PLOS ONE 9,e85513.
[36]Zhao,J.,Wang,F.,Li,J.,Zou,B.,Wang,X.,Li,Z.,Fu,S.,2014. Effects of experimental nitrogen and/or phosphorus additions on soil nematode communities in a secondary tropical forest. Soil Biology and Biochemistry 75,1-10.
[37]Zhao,J.,Wang,X.,Shao,Y.,Xu,G.,Fu,S.,2011. Effects of vegetation removal on soil properties and decomposer organisms. Soil Biology and Biochemistry 43,954-960.
[38]Zhao,J.,Wang,X.,Wang,X.,Fu,S.,2014. Legume-soil interactions: legume addition enhances the complexity of the soil food web. Plant and Soil 385,273-286.
[39]Zhao,J.,Zeng,Z.,He,X.,Chen,H.,Wang,K.,2015d. Effects of monoculture and mixed culture of grass and legume forage species on soil microbial community structure under different levels of nitrogen fertilization. European Journal of Soil Biology 68,61-68.
[40]Zhao,J.,Zhang,W.,Wang,K.,Song,T.,Du,H.,2014. Responses of the soil nematode community to management of hybrid napiergrass: The trade-off between positive and negative effects. Applied Soil Ecology 74,134-144.
[41]Zhao,J.,Zhao,C.,Wan,S.,Wang,X.,Zhou,L.,Fu,S.,2015. Soil nematode assemblages in an acid soil as affected by lime application. Nematology 17,179-191
[42]Wang,W.,Peng,P.,Li,J.,Liao,X.,Zhang,W.,Wang,K.,Zhao,J.*,2024. Effects of vegetation succession on soil microbial communities on karst mountain peaks. Forests 15: 586.
[43]孝惠爽,赵杰*,傅声雷,2023. 华南典型尾叶桉纯林经营对土壤理化性质、微生物和线虫群落的影响. 生态学报 43: 7963-7973.